Approximation Algorithms for Capacitated Rectangle Stabbing
نویسندگان
چکیده
In the rectangle stabbing problem we are given a set of axis parallel rectangles and a set of horizontal and vertical lines, and our goal is to find a minimum size subset of lines that intersect all the rectangles. In this paper we study the capacitated version of this problem in which the input includes an integral capacity for each line. The capacity of a line bounds the number of rectangles that the line can cover. We consider two versions of this problem. In the first, one is allowed to use only a single copy of each line (hard capacities), and in the second, one is allowed to use multiple copies of every line provided that multiplicities are counted in the size of the solution (soft capacities). For the case of d-dimensional rectangle stabbing with soft capacities, we present a 6dapproximation algorithm and a 2-approximation algorithm when d = 1. For d-dimensional rectangle stabbing problem with hard capacities, we present a bi-criteria algorithm that computes 16d-approximate solutions that use at most two copies of every line. For the one dimensional case, an 8-approximation algorithm for hard capacities is presented. Finally, we present hardness results for rectangle stabbing when the dimension is part of the input and for a two-dimensional weighted version with hard capacities.
منابع مشابه
Approximation Algorithms for Rectangle Stabbing and Interval Stabbing Problems
In the weighted rectangle stabbing problem we are given a grid in ]R2 consisting of columns and rows each having a positive integral weight, and a set of closed axis-parallel rectangles each having a positive integral demand. The rectangles are placed arbitrarily in the grid with the only assumption that each rectangle is intersected by at least one column and at least one row. The objective is...
متن کاملConstan Ratio Approximation Algorithms for the Rectangle Stabbing Problem and the Rectilinear Partitioning Problem
We provide constant ratio approximation algorithms for two NP-hard problems, the rectangle stabbing problem and the rectilinear partitioning problem. In the rectangle stabbing problem, we are given a set of rectangles in two-dimensional space, with the objective of stabbing all rectangles with the minimum number of lines parallel to the x and y axes. We provide a 2-approximation algorithm, whil...
متن کاملParameterized Complexity of Stabbing Rectangles and Squares in the Plane
The NP-complete geometric covering problem Rectangle Stabbing is defined as follows: Given a set of horizontal and vertical lines in the plane, a set of rectangles in the plane, and a positive integer k, select at most k of the lines such that every rectangle is intersected by at least one of the selected lines. While it is known that the problem can be approximated in polynomial time with a fa...
متن کاملComputing Partitions of Rectilinear Polygons with Minimum Stabbing Number
The stabbing number of a partition of a rectilinear polygon P into rectangles is the maximum number of rectangles stabbed by any axis-parallel line segment contained in P . We consider the problem of finding a rectangular partition with minimum stabbing number for a given rectilinear polygon P . First, we impose a conforming constraint on partitions: every vertex of every rectangle in the parti...
متن کاملCapacitated Arc Stabbing
In the Capacitated Arc Stabbing problem (CAS) we are given a set of arcs and a set of points on a circle. We say that a point p covers, or stabs, an arc A if p is contained in A. Each point has a weight and a capacity that determines the number of arcs it may cover. The goal is to find a minimum weight set of points that stabs all the arcs. CAS models a periodic multiitem lot sizing problem in ...
متن کامل